A Tour Up The Gray Scale Vector of the RGB Color Cube: How Computer Graphics Color Spaces Relate to Digital Video Color Difference Space

Leonard J. Reder (reder@ieee.org)
Michael Farris (micfarris@aol.com)

What I Will Talk About

- Show various color slices within RGB color cube
 - Tour up the gray vector showing orthogonal color planes!!
 - Three intersecting planes that bisect the gray scale vector
- HSV (or HLS) color space
 - Color cross sections of HSV space
 - How HSV (or HLS) relate to RGB
- Component Video Color Difference Space
 - Tour up the luminance vector!!
 - Recommendation 601 standard
 - Interesting geometric relationship to RGB

The Tour: RGB Unit Color Cube

Showing (x_v, y_v, z_v) View Coordinate System

The Tour: Formulation

Using homogeneous coordinates to rotate and translate from RGB space to Yx_yy_y space yields

$$\begin{bmatrix} Y \\ x_{v} \\ y_{v} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{bmatrix} * \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 0.577 & 0.577 & 0.577 \\ -0.707 & 0.707 & 0 \\ -0.408 & -0.408 & 0.816 \end{bmatrix} * \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Solving for RGB so we can generate color planes yields

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 0.577 & -0.707 & 0.408 \\ 0.577 & 0.707 & -0.408 \\ 0.577 & 0 & 0.816 \end{bmatrix} * \begin{bmatrix} Y \\ x_{v} \\ y_{v} \end{bmatrix}$$

The Tour: Orthogonal Color Planes 1

• The Y=1/3 plane has vertices defined by the pure red, green and blue points of the RGB cube.

The Tour: Orthogonal Color Planes 2

- The Y=1/2 plane is an equilateral hexagon.
- The edges intersect all six sides of the RGB cube.

The Tour: Orthogonal Color Planes 3

$$Y = 3/5$$

Y = 2/3

Y = 4/5

• The Y=2/3 plan vertices are defined by the pure cyan, yellow and magenta points of RGB cube.

Three Planes That Bisect The RGB Cube Cyan[⊣] **That Fully Contain The Gray Vector** Magenta Blue Green Yellow Black Red

• Side views through

gray vector.

- Indicates color symmetry about gray vector.
- Planes are flipped and rotated for presentation.
- Diagonal edge of plane is scaled to one from sqrt(2) for presentation.

Traditional HSV Hexcone and Color Cross Sections

- Observe the concentration of white at top of slices.
- Complementary colors about V axis.
- V axis is conceptually along the gray vector.

Slice of HSV at H = 0° and 180°

Slice of HSV at H = 120° and 300°

Slice of HSV at H = 240° and 60°

HSV Color Model

HSV is a color space that rotates and skews (in a non-linear fashion) the RGB color cube into an HSV cone.

V=1.0 surface of RGB cube

V=1.0 surface (viewed from above)

HSV color space

V=1.0 surface (flattened into 2-D and stretched into circular plane)

HLS Color Model

HLS Color Space

HLS is a color space that rotates and stretches (in a non-linear fashion) the RGB color cube into an HLS double cone.

RGB color cube (including "half-gray" point

R=G=B=0.5)

L=0.5 surface of RGB cube

L=0.5 surface of RGB cube (viewed from above)

L=0.5 surface of RGB cube (flattened into 2-D and stretched into circular plane)

Recommendation 601 Component Video Standard

- Reason for component video coding is to reduce bandwidth.
- Encode RGB color cube representation into luminance (Y_{601}) and two color difference components $(B-Y_{601})$, $(R-Y_{601})$ using

$$\begin{bmatrix}
\mathbf{Y}_{601} \\
\mathbf{B} - \mathbf{Y}_{601} \\
\mathbf{R} - \mathbf{Y}_{601}
\end{bmatrix} = \begin{bmatrix}
0.299 & 0.587 & 0.114 \\
-0.299 & -0.587 & 0.886 \\
0.701 & -0.587 & -0.114
\end{bmatrix} * \begin{bmatrix} \mathbf{R} \\ \mathbf{G} \\ \mathbf{B} \end{bmatrix}$$

- Color difference components are down-sampled to reduce bandwidth (or data capacity) of color video signal with minimal degradation noticed by viewer.
- Green dominates human visual sensitivity so it is weighted greatest in luminance computation. So red/blue difference components are sub-sampled.
- Note RGB is assumed to be the R'G'B' gamma corrected values.
- Y_{601} ,(B- Y_{601}),(R- Y_{601}) is scaled to 8 bits codes: Y_{601} , C_B , C_R .
- Y_{601} , C_B , C_R is 4:2:2 sampled; C_B , C_R sampled at half the rate of Y_{601} .

The Tour: Y_{601} , (B- Y_{601}),(R- Y_{601}) Color Space

(RGB Color Cube Mapped Inside Y_{601} , B- Y_{601} , R- Y_{601})

The Tour Up The Luminance Vector: Orthogonal Color Planes 1

Y₆₀₁=0.299 (Red)

Y₆₀₁=0.356 (5 Sided)

The Tour Up The Luminance Vector: **Orthogonal Color Planes 2**

$$Y_{601} = 0.587$$
 (Green)

The Tour Up The Luminance Vector: Orthogonal Color Planes 3

 $Y_{601} = 0.701 (Cyan)$

 $Y_{601} = 0.884 \text{ (Yellow)}$

Comparison of Y, x_{v.} y_v Space to Y₆₀₁, B-Y₆₀₁, R-Y₆₀₁ Space.

RGB Color Cube Mapped Inside Y, $x_{v_r} y_v$ Color (RGB Cube Volume = 0.577)

RGB Color Cube Mapped Inside Y_{601} , B- Y_{601} , R- Y_{601} Color (RGB Cube Volume = 0.587)

Relationships

• Relationship between the Y, x_v , y_v space and Y_{601} , $(B-Y_{601})$, $(R-Y_{601})$ is

$$\begin{bmatrix} \mathbf{Y}_{601} \\ \mathbf{B} - \mathbf{Y}_{601} \\ \mathbf{R} - \mathbf{Y}_{601} \end{bmatrix} = \begin{bmatrix} 1 & 0.204 & -0.269 \\ 0 & -0.204 & 1.084 \\ 0 & -0.911 & -0.140 \end{bmatrix} * \begin{bmatrix} \mathbf{Y} \\ \mathbf{x}_{v} \\ \mathbf{y}_{v} \end{bmatrix}$$

- Y₆₀₁ is equivalent to scaled and gamma corrected gray vector (Y).
- Volume of the valid RGB color region in each color space is approximately a quarter of region defined by cube of minimum to maximum color extent

[0.25 for Y,
$$x_v$$
, y_v , 0.237 for Y_{601} , (B- Y_{601}), (R- Y_{601})].

• Perceptually the color dynamic range is preserved when down-sampled (e. g. artifacts from sub-sampling chroma components are not obviously visible to viewer).

Primary and Complimentary Color Projections

x_v, y_v Components

 $(B-Y_{601}),(R-Y_{601})$ Components

- Rotation of x_v , y_v is 97.35 degrees clockwise w.r.t. (B-Y₆₀₁),(R-Y₆₀₁).
- Original RGB space rotated a view coordinate system about the blue axis 45 degrees and then about the red axis 45 degrees up.

Summary

- Insightful tours up the gray scale vector (RGB space) and the luminance vector $[Y_{601}, (B-Y_{601}), (R-Y_{601})]$ space] were presented.
- These tours yielded interesting color images of planes orthogonal to the principle axis (either Y or Y_{601}).
- The symmetrical nature of these color coordinate systems is realized.
 - half way up the gray vector the color plane is an equilateral hexagon.
 - half way up the luminance vector the color plane is a perfect square.
- HSV (or HLS) are non-linear mappings from the RGB cube.
- The Y, x_v , y_v space is compared to Y_{601} , $(B-Y_{601})$, $(R-Y_{601})$ space.
 - $-Y_{601} = Y$
 - Colors rotated > 90 degrees.

THANK YOU! HOPE YOU ENJOYED THE TOUR.

Why the Hexacone Representation is Misleading!!!

Three Planes That Bisect The RGB Cube That Fully Contain The Gray Vector

$$R(x_{v},x_{v}) = x_{v}$$

$$G(x_{v},x_{v}) = y_{v}$$

$$B(x_{v},x_{v}) = y_{v}$$

$$R(x_{v},x_{v}) = y_{v}$$

$$G(x_{v},x_{v}) = x_{v}$$

$$B(x_{v},x_{v}) = y_{v}$$

$$R(x_{v},x_{v}) = y_{v}$$

$$G(x_{v},x_{v}) = y_{v}$$

$$B(x_{v},x_{v}) = x_{v}$$

RGB Color Space Cyan White Blue Magenta Yellow Red

RGB to HSV Conversion Equations

Min = min(R,G,B)Max = max(R,G,B)

H' = (G-B)/(Max-Min) (for Max = R) = 2 + (B-R)/(Max-Min) (for Max = G) = 4 + (R-G)/(Max-Min) (for Max = B)

 $H = (60*H') \mod 360$

S = (Max-Min)/Max (for Max <> 0)

V = Max

If you are along the gray vector (Max=Min), S=0 and H is undefined.

HSV is a color space that rotates and skews (in a non-linear fashion) the RGB color cube into an HSV cone.

Effectively, each circular plane that represents a value of V is a mapping of three sides of an RGB cube (turning a three-dimensional "half-cube" surface into a 2-D circular plane)

RGB Color Space Cyan White Magenta Yellow Red

RGB to HLS Conversion Equations

Min = min(R,G,B)Max = max(R,G,B)

H' = (G-B)/(Max-Min) (for Max = R) = 2 + (B-R)/(Max-Min) (for Max = G) = 4 + (R-G)/(Max-Min) (for Max = B)

 $H = (60*H') \mod 360$ L = (Max+Min)/2

S = (Max-Min)/(Max+Min) (for L >= 0.5)= (Max-Min)/(2-(Max+Min)) (for L < 0.5)

If you are along the gray vector (Max=Min), S=0 and H is undefined.

RGB Color Space (rotated) with colors that have L=0.0 (black), L=0.5, and L=1.0 (white)

L=(max(R,G,B)+ min(R,G,B))/2

L=0.0 (black)

HLS is a color space that rotates and stretches (in a non-linear fashion) the RGB color cube into an dual-cone HLS space.

Effectively, each circular planar cut through the HLS "cone" that represents a value of L is a mapping of a irregular planar surface within the RGB cube (turning a three-

Comparison of Y, x_{v_1} y_v Space to Y₆₀₁, B-Y₆₀₁, R-Y₆₀₁ Space.

RGB Color Cube Mapped Inside Y, x_{v.} y_v Color

RGB Color Cube Mapped Inside Y₆₀₁, B-Y₆₀₁, R-Y₆₀₁ Color

